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Potential energy landscape of a model glass former: Thermodynamics, anharmonicities,
and finite size effects

Stephan Bu¨chner and Andreas Heuer
Max-Planck-Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

~Received 21 June 1999!

It is possible to formulate the thermodynamics of a glass forming system in terms of the properties of
inherent structures, which correspond to the minima of the potential energy and build up the potential energy
landscape in the high-dimensional configuration space. In this work we quantitatively apply this general
approach to a simulated model glass-forming system. We systematically vary the system size betweenN
520 andN5160. This analysis enables us to determine for which temperature range the properties of the glass
former are governed by the regions of the configuration space, close to the inherent structures. Furthermore, we
obtain detailed information about the nature of anharmonic contributions. Moreover, we can explain the
presence of finite size effects in terms of specific properties of the energy landscape. Finally, determination of
the total number of inherent structures for very small systems enables us to estimate the Kauzmann tempera-
ture. @S1063-651X~99!11212-1#

PACS number~s!: 61.20.Ja, 64.70.Pf
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I. INTRODUCTION

The physics of glass forming systems is a complex m
tiparticle problem, as reflected, e.g., by the occurrence
nonexponential relaxation or non-Arrhenius temperature
pendence of transport coefficients for most systems@1,2#.
Beyond phenomenological models like the Gibbs-Ad
model @3# or theoretical approaches like the mode-coupl
theory @4# computer simulations have become increasin
important to yield additional insight into the nature of th
glass transition from a microscopic viewpoint.

A fruitful approach is the concept of the potential ener
landscape~PEL! @5–7#. In this approach the total system
regarded as a single point moving in the high-dimensio
configuration space on a time-independent landscape, re
senting the potential energy. To a large extent the topo
phy of the PEL is characterized by the local energy minim
also denotedinherent structures. Although the analysis of
inherent structures has been applied to several probl
@8–12#, until now only limited quantitative information is
available concerning the PEL of glass forming systems. T
is at least partly related to the fact that the number of inh
ent structures exponentially increases with system size
that a complete enumeration is only possible for very sm
systems. This has been demonstrated for small clus
@13,14# as well as for monatomic Lennard-Jones syste
with periodic boundary conditions for up to 32 particl
@15,16#. Since monatomic systems tend to crystallize even
computer time scales it has become common to use bi
rather than monatomic systems to suppress crystalliza
@17–19#. For these systems as well as for slightly larg
monatomic systems, however, a complete enumeration i
longer possible so that one has to resort to an approp
statistical analysis. Such an approach has been used in@20#
where the distribution of local minima for a KCl cluster
determined. Another approach to characterize the PEL is
plication of the lid algorithm@21#. Characterization of the
PEL is also an important topic in spin glass physics@22,23#.
PRE 601063-651X/99/60~6!/6507~12!/$15.00
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A major question, which has become of increasing imp
tance, is the relevance of the PEL@24–26#. In a trivial sense
the PEL just reflects the full potential energy of the syst
and is therefore always relevant. In a less trivial sense
may askwhether the physics of the system is governed o
by the part of the configuration space close to the inher
structures. In a recent work it has been shown for a Lenna
Jones system that exactly for the temperature regionT
,Tr , for which typical features like the nonexponentiali
of the structural relaxation are observed also the average
ergy of inherent structures depends on temperature@24#.
From this observation the authors concluded that the PE
indeed relevant for temperatures below some tempera
Tr . Interestingly,Tr is significantly larger than the critica
temperatureTc of the mode-coupling theory@4#. In Ref. @25#
it was shown that close toTc the dynamics of the mode
glass former can be basically viewed as a superposition
hopping processes between the different inherent struct
and local vibrations around them. This is a very direct pie
of evidence for the relevance of the PEL in the sense m
tioned above. Furthermore it could be shown explicitly th
the presence of fast and slow regions in a glass former,
thus the presence of nonexponential relaxation, can be at
uted to the topography of the PEL@26#. Also the relevance of
the PEL for aging has been recently demonstrated@27#.

If the system mainly resides close to the inherent str
tures of the PEL, the potential energy can be described
harmonic approximation around these inherent structures
spectively. Therefore our question concerning the releva
of the PEL can be reformulated by asking to which deg
the properties of the system can be described in harm
approximation. If the system always resides in a single m
mum the degree of anharmonicity can be simply determin
e.g., by analysis of the temperature dependence of the m
fluctuations around an inherent structure@24#. At higher tem-
peratures for which the residence time close to a single
herent structure may be small these approaches becom
reliable.
6507 © 1999 The American Physical Society
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6508 PRE 60STEPHAN BÜCHNER AND ANDREAS HEUER
In this paper we want to show that computer simulatio
can be used to yield a variety of information about the PE
The main ingredients of our simulations have been alre
proposed by Stillinger and co-workers@8,28,7#. First, we use
their algorithm, combining standard molecular dynam
~MD! simulation with regular quenching of the potential e
ergy. Second, we adapt their formulation of the partiti
function of the total system in terms of the properties of
individual inherent structures. Combination of both ingre
ents will yield quantitative information about the partitio
function and thus about the thermodynamics of the syst
More specifically the following aspects will be analyzed:~i!
Characterization of the PEL in terms of the density of inh
ent structures.~ii ! Dependence of the PEL on system si
and comparison with scaling relations one would expect
sufficiently large systems.~iii ! Quantification of anharmonic
contributions.~iv! Connection of the PEL to dynamic prop
erties.~v! Consequences for thermodynamic properties l
the specific heat and the presence of a Kauzmann temp
ture. In the field of clusters similar approaches have b
already applied to some of these aspects@29,30#.

The organization of this paper is as follows. In Sec. II w
present a detailed outline of the conceptual background
the approach chosen in this work. Section III contains a
scription of our simulation method and the model system
Sec. IV the dynamics and the structure is characterized
standard molecular dynamics~MD! simulations. In Sec. V
we present the main results of our simulations with respec
properties of the PEL. The discussion of the implications
these results can be found in Sec. VI.

II. PARTITION FUNCTION OF GLASS FORMING
SYSTEMS

In this section we present the conceptual background
plied in this work and introduce the notations used thereaf
This outline is rather detailed in order to make the implic
tions of this approach as clear as possible. Starting from
distribution function of potential energiesG(E), characteriz-
ing the total configuration space, the configurational con
bution of the canonical partition functionZ(T) can be ex-
pressed as

Z~T!5E
2`

`

dEG~E!exp~2bE!, ~1!

whereb51/T(kB[1). No specific information about inher
ent structures is contained. In case that the physics is ma
determined by the inherent structures and their close ne
borhood, respectively, it may be more informative to expr
the partition function in terms of the properties of the inh
ent structures. The main idea is to split the total configurat
space in contributions corresponding to the different inher
structuresi with energye i , i.e., the minima of the potentia
energy of the system. Each inherent structure is surroun
by a so-called basin of attractionV i . It is defined as the se
of all configurations which end up as the inherent structui
upon energy minimization. Since the mapping of configu
tions on inherent structures via enery minimization is uniq
~except for a set of configurations with measure zero, co
sponding to the saddle points of the PEL! the total configu-
s
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ration space can be decomposed in disjoint partitionsV i .
Then Z(T) can be written as the sum over the individu
partition functionsZi(T), i.e., Z(T)5(Zi(T), where the
Zi(T) are defined as

Zi~T![E
V i

drW1 . . . drWNexp„2bV~rW1, . . . ,rWN!…. ~2!

The$rW j% denote the positions of theN particles of the system
and the integration is over the basin of attraction of thei th
inherent structure.

For the final calculation of the partition function it is help
ful to rewrite the summation over all inherent structures
combining all contributions of inherent structures with t
same energye. For this purpose we introduce the partitio
function Z(e,T), defined as

Z~e,T!5(
i

Zi~T!d~e2e i !, ~3!

such that

Z~T!5E deZ~e,T!. ~4!

On a qualitative levelZ(e,T) is a measure for the probabilit
that a configuration at temperatureT belongs to a basin o
attraction of an inherent structure with energye. Actually, as
discussed in the next section, it is this quantityZ(e,T)
which, apart from a proportionality factor, we can extra
from our simulations. IfG(e) denotes the number of inher
ent structures with energye we can furthermore introduce
the average valuez(e,T) for all inherent structures with en
ergy e via

z~e,T![Z~e,T!/G~e!. ~5!

Note that the logarithm ofG(e) is the configurational en-
tropy.

In general,Z(e,T) may be a very complicated function o
T and e. In the limit of low temperatures, however, it i
reasonable to assume that apart from the energye i itself the
individual partition functionsZi are mainly determined by
the harmonic contributions, i.e.,Zi(T)'exp(2bei)Zi

harm(T),
so that in general it is helpful to take into account harmo
and anharmonic contributions individually. The harmon
contributions are given by

Zi
harm~T![)

j
S 2pT

n j ,i
D 1/2

[Yi
harmT(3N23)/2, ~6!

where n j ,i denote the 3N23 positive eigenvalues of the
force matrix evaluated for thei th inherent structure. Note
that the temperature dependence of the vibrational parti
function Zi

harm(T) is simply given by the factorT(3N23)/2

whereasYi
harm contains the temperature-independent inf

mation about the harmonic modes around this inherent st
ture. In analogy to above we defineyharm(e) as the average
of theYi

harm over all inherent structures with energye. Then
we can write
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PRE 60 6509POTENTIAL ENERGY LANDSCAPE OF A MODEL GLASS . . .
z~e,T![exp~2be!yharm~e!T(3N23)/2zanh~e,T!, ~7!

thus introducing the termzanh(e,T), accounting for the an-
harmonic corrections. By definition one haszanh(e,T)51 for
sufficiently low temperatures. In literature, phenomenolo
cal expressions for the description of anharmonic contri
tions can be found; see, e.g., Refs.@29,30#. Finally, the total
partition function can be expressed as

Z~T!5T(3N23)/2E deG~e!yharm~e!zanh~e,T!exp~2be!.

~8!

Since all thermodynamic quantities can be derived fr
knowledge of the partition function it is evident from Eq.~8!
that it is not the density of inherent structuresG(e) alone
which determines the properties of the system. At su
ciently low temperatures it is rather the produ
yharm(e)G(e) which is relevant. We denote this productef-
fective density Geff(e), i.e.,

Geff~e![yharm~e!G~e!. ~9!

It can be determined fromZ(e,T) via

Geff~e!5T2(3N23)/2Z~e,T!exp~be!/zanh~e,T!. ~10!

Thus for sufficiently low temperatures for whichzanh(e,T)
51 we can directly obtain the effective density of sta
from a reweighting of theZ(e,T) with the inverse Boltz-
mann factor. The resulting effective densityGeff(e) is inde-
pendent of temperature. In practice one has to determ
Z(e,T) for several temperatures in order to obtainGeff(e)
for a wide range of energies.

Finally, the total partition function can be expressed
terms of the effective density via

Z~T!5T(3N23)/2E deGeff~e!zanh~e,T!exp~2be!.

~11!

Despite the formal similarity with Eq.~1! the present ap-
proach is based on a description in terms of the distribu
of inherent structures in contrast to an overall description
the PEL, expressed in Eq.~1!. The main advantage of th
present approach is the possibility to uniquely identify anh
monic contributions. A straightforward way to do this is
calculate a thermodynamic quantity like the specific heat,
the one hand, directly from the MD configurations and,
the other hand, from Eqs.~10! and ~11! with zanh(e,T)51,
i.e., using the harmonic approximation. Deviations betwe
both approaches can be uniquely attributed to anharm
contributions, i.e., invalidation of the relationzanh(e,T)51.

Finally we would like to mention that there exist altern
tive approaches to formulate the thermodynamics via a c
bination of constant energy MD simulations and quench
from which the energy densityG(E) for different systems
has been estimated; see, e.g., Ref.@30#. Furthermore it is
interesting to note that the thermodynamics of glasses ca
also calculated via analytical means@31,32#.
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III. METHODS

We studied a binary Lennard-Jones~LJ! type system. The
mutual interactions are chosen such that the interaction
tween unlike particles is favored, thus avoiding crystalliz
tion for an appropriately chosen mixing ratio. The pairwi
interaction potential has been proposed by Stillinger and W
ber @17#

Vi j ~r i j !5Cek( i )k( j )@~r i j /sk( i )k( j )!
21221#

3exp@~r i j /sk( i )k( j )2a!21#;r i j ,sk( i )k( j )

~12!

and zero otherwise. Herek( i )P$A,B% indicates whether the
i th particle is anA or a B type particle. The parameter
are C58.805977, a51.652194, eAA51,sAA51.0, eAB
51.5eAA , sAB52.00/2.49sAA , eBB50.5eAA , sAB
52.20/2.49sAA . The system contains 80%A particles and
20% B particles. Energy and length units are given in un
of eAA and sAA . Finally, the time unit isAmAsAA

2 /eAA. In
what follows, all quantities are expressed in these units.
compared to a LJ potential with a standard cutoff atr 52.5
~in LJ units! this potential is more short-ranged. We pe
formed simulations at constant densityr51.204, tempera-
tures ranging from 0.667 to 2.5, and system sizes betw
N520 andN5160. The glass former was propagated a
given temperatureT via standard molecular dynamics~MD!
techniques, using the velocity form of the Verlet algorith
with time steps depending on temperature but smaller t
0.00125. The temperature was kept constant via velocity
scaling, i.e., by using a constant kinetic energy during
simulation run. Alternatively, we applied the Nose equatio
of motion @33#, with no significant variations for the quant
ties discussed in this work. We checked that upon shift
the temperature scale by 30% to lower temperatures
present Lennard-Jones type model can be mapped to
model presented in@19# for temperatures in the supercoole
regime.

First we performed standard MD simulations at differe
temperatures yielding information about the relaxation pr
erties like the structural (a) relaxation time. To obtain infor-
mation about the PEL we calculated inherent structures
the conjugate gradient minimization technique. The pro
dure was such that during an MD run at constant tempera
the system was regularly minimized and after each mini
zation procedure the MD run was continued with the sa
configuration and momenta as before the minimization. T
is schematically shown in Fig. 1. The thick line correspon
to the MD trajectory; the thin lines sketch the path the s
tem takes upon quenching. During every minimization p
cess the MD configuration is mapped on the inherent str
ture, whose basin of attraction comprises the M
configuration. On average we performed 25 minimizati
procedures during onea relaxation time.

The probability that an arbitrary MD configuration be
longs to a basin of attraction of thei th inherent structure is
given by Zi(T)/Z(T). Therefore the probabilityP(e,T) to
find an inherent structure with energye ~at constant tempera
ture! by the above procedure is given byZ(e,T)/Z(T). This
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6510 PRE 60STEPHAN BÜCHNER AND ANDREAS HEUER
is the key feature which according to the outline of Sec
allows us to extract thermodynamic properties from this ty
of procedure.

IV. DYNAMICS AND STRUCTURE

In this section we present results, characterizing the
namics of our LJ-type system for different system sizes
different temperatures. The dynamics can be convenie
described by the intermediate incoherent scattering func
S(q,t) which is defined as

S~q,t !5
1

N (
i

cos„qW @rW i~ t !2rW i~0!#…, ~13!

where qW denotes the scattering vector andrW(t)2rW(0) the
displacement of a particle during timet. Here we restrict
ourselves to theA particles. For isotropic systems only th
absolute valueq of the scattering vector is relevant. In wh
follows we take a value ofq close to the first maximum o
the structure factor, i.e., the inverse typical particle dista
(q57.251). In Fig. 2 we showS(q,t) for T50.667 for dif-
ferent system sizesN. For all sizes one can clearly see th
two-stage relaxation~fast b anda process! as predicted by
the mode-coupling theory. Starting from large values ofN

FIG. 1. Schematic presentation of the algorithm. On a regu
basis MD configurations are quenched, giving information ab
the energye(t) of the corresponding inherent structure.

FIG. 2. The incoherent scattering functionSAA(q,t) for T
50.667 for different system sizesN, ranging fromN520 to N
5160.
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only minor variations ofS(q,t) occur forN>60. The most
significant observation is that strong finite size effects oc
for N,60. In this regime the relaxation time strongly in
creases with decreasing system size. However, even foN
520 one observes on a qualitative level, the same two-s
relaxation process as for large system sizes. We checke
T50.883 that also for system sizes betweenN5160 andN
5480 no systematic variation withN is observed. A previous
numerical analysis of finite-size effects for a similar syste
can be found in@34#.

In Fig. 3 we show the temperature dependence ofS(q,t)
for N560. As already known from many different exper
ments and simulations thea-relaxation time strongly in-
creases with decreasing temperature. In Fig. 4 we display
a-relaxation time for a large part of the (T,N) plane. It is
defined viaS(q,ta)51/e. One can clearly see that for a
temperatures analyzed in this work strong finite size effe
start to play a role forN,60. The apparent step in relaxatio
times betweenN560 andN540 decreases with increasin
temperature. Interestingly, forN520 as well as forN540
one observes an Arrhenius temperature dependence for
temperatures. In contrast, for largeN one observes a continu
ously increasing apparent activation energy, in agreem
with typical experimental observations on fragile glass for
ers. It has been already reported earlier for a monato
Lennard-Jones-type system with 32 particles that at low te
peratures the relaxation has an Arrhenius temperature de
dence@15#. For that system the low-temperature activati
energy could be related to an effective barrier of the P
around a particular inherent structure with a low ener
which was visited very often at low temperatures. A simi
reason will be discussed below for the present case.

r
t

FIG. 3. The temperature dependence of the incoherent scatte
function SAA(q,t) for N560.

FIG. 4. Thea-relaxation time for different temperatures an
system sizes, determined by the conditionS(q,ta)51/e.
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PRE 60 6511POTENTIAL ENERGY LANDSCAPE OF A MODEL GLASS . . .
As demonstrated in Fig. 5, also the pair correlation fu
tion g(r ) between particles of the minority componentB
indicates significant finite size effects at the lowest tempe
ture. Again, only forN>60 the bulk limit is approximately
reached. This indicates that there is a common reason
finite size effects, relevant for static and dynamic propert
In contrast, only very mild finite size effects can be observ
between particles of the majority componentA.

V. POTENTIAL ENERGY LANDSCAPE

Based on the algorithm discussed in Sec. III we analy
runs with lengths between 300 and 1000ta . For system size
N560 and for three representative temperaturesT
51.667,0.833,0.667) we showe(t) curves in Fig. 6, reflect-
ing the energy variation of the inherent structures with tim
Closer inspection of thee(t) time series forT50.833 and
T50.667 reveals that there are long periods of time dur
which the system is jumping back and forth between a sm
number of inherent structures. This scenario can be in
preted in terms of valleys on the PEL in which the system
caught for some time@26#. Here we concentrate on the st
tistics of the inherent structures.

In Fig. 7 we plot the average value of the energy of
herent structures, denoted^e&T , for different temperatures
This plot is similar to the curves shown in Ref.@24#. The
temperature variation forT50.833,0.714,0.667 is consiste
with a 1/T behavior whereas at high temperatures the te
perature dependence becomes weaker. In Ref.@24# the au-
thors additionally observed a low-temperature plate
which, however, was exclusively related to nonequilibriu
effects and correspondingly strongly depends on the ther
history. Here, we restrict ourselves to the regime of equi
rium dynamics. In order to get a closer understanding of
temperature dependence we have determined not only

FIG. 5. The pair correlation functions~a! gAA(r ) and~b! gBB(r )
for system sizesN520,40,60,160, determined forT50.667. The
offset has been shifted for better comparison.
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average value but also the whole probability curveP(e,T)
that at temperatureT one observes an inherent structure w
energye. As shown in Fig. 8 the distributionP(e,T) con-
tinuously shifts to lower energies when decreasing the te
perature but does not change its shape or width. Our go
to derive the effective densityGeff(e), see Eq.~9!, of inher-
ent structures from knowledge ofP(e,T). SinceZ(e,T) is
proportional toP(e,T), the effective densityGeff(e) can in
principle be determined from Eq.~10! except for a propor-
tionality constant which only depends on temperature, i.e

Geff~e!zanh~e,T!}P~e,T!exp~be!. ~14!

Obviously, application of Eq.~14! requires knowledge of
zanh(e,T), which in general is not available. If, howeve
zanh(e,T) does not depend one ~which trivially holds in the
low temperature limit wherezanh[1 but, of course, is a more
general condition! it can be included in the proportionalit
constant. Then thee dependence ofGeff(e) can be deter-
mined from multiplication ofP(e,T) with an inverse Boltz-
mann factor except for a proportionality constant. In pr
ciple a single temperature is sufficient to obtainGeff(e).
However, as already shown in Fig. 8, for different tempe
turesP(e,T) is distributed around different energies. Ther
fore in practice it is necessary to combine the simulations

FIG. 6. The time dependence of the energy of inherent str
tures e(t) for three representative temperatures~a! T50.667, ~b!
T50.833, ~c! T51.667 and for system sizeN560.
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6512 PRE 60STEPHAN BÜCHNER AND ANDREAS HEUER
different temperatures to obtain larger parts of theGeff(e)
distribution; see, e.g.@35#. The relative proportionality fac-
tors are determined by the condition thatGeff(e), extracted
from different temperatures, should be identical in the ov
lap region. This procedure is performed in Fig. 9. Obvious
for the three lower temperaturesT50.667;0.714;0.833 the
overlap is close to perfect. A single unknown proportional
constant remains which we accounted for by plotti
Geff(e)/Geff(e0) wheree0 is the lowest energy found durin
the simulations. Interestingly, theGeff(e) curves, obtained
from the high-temperature simulations (T51.667 andT
52.5) do not overlap with the low-temperature data. As d
cussed above this directly indicates that at high temperat
anharmonic contributions are present and furthermore
pend, as expressed byzanh(e,T), on energye. The Geff(e)
curves were shifted such that they agree with the lo
temperature curves in the region of largee. No mapping was
possible for the lowe region. This behavior as well as th
consequences will be discussed in Sec. VI.

The energy dependence of the effective density can
excellently fitted by a Gaussian distribution exp„2(e
2emax)

2/2s2
… with emax525.6N and s250.3N. A Gauss-

ian distribution naturally occurs in the limit of very largeN.
In this limit it is reasonable to assume that the total syst
can be decomposed into only weakly interacting subsyst

FIG. 7. The average value of the energy of inherent structu
^e&T for different temperatures and different system sizes. The s
line corresponds to an estimation forN560, based onGeff(e); see
Fig. 9.

FIG. 8. The distributionP(e,T) of inherent structures at thre
different temperatures (T50.667,0.833,1.667 from left to right!.
r-
,

-
es
e-

-

e

s

so that the total energy is a sum of weakly correlated ene
contributions. According to the central limit theorem th
naturally results in a Gaussian distribution. It is neverthel
surprising that already forN560 the Gaussian distribution i
a very good approximation to the true distribution althou
such a small system definitely cannot be decomposed
only weakly interacting subsystems. In any event, as sho
in @36# the central limit alone does not account for the deg
of Gaussianity. Rather it suggests a close to Gaussian d
bution of energies already on a very local scale. Intere
ingly, analysis of experimental specific heat data of ethylb
zene also yields a Gaussian distribution ofG(e) @37#.

Based on the knowledge ofGeff(e) it is possible to esti-
mate^e&T in harmonic approximation; see Sec. II. This r
sults in

^e&T
harm5emax2

s2

T
. ~15!

The resulting curve forN560 is also included in Fig. 7
Whereas in the low-temperature regime one has^e&T

harm

'^e&T , both curves deviate at high temperatures wh
again reveals the relevance of anharmonic contribution
high temperatures. The qualitative interpretatino of these
harmonic effects will be given in Sec. VI.

We also checked thee dependence ofyharm(e). This is
essential in order to estimate the density of inherent st
G(e) from Geff(e). Again this analysis can be performed fo
different temperatures. To be specific, we calculated the
erage value of ln(Yi

harm) for all inherent structures with en
ergy e i5e, obtained from our quenching procedure. Fo
mally, the resulting expectation value can be written as

^ ln~yharm!&~e!5

(
i

d~e2e i !ln~yi
harm!yi

harmzi
anh~T!

(
i

d~e2e i !yi
harmzi

anh~T!

.

~16!

For low temperatures where anharmonic effects can be
glected one expects temperature independent expect
values^ ln(yharm)&(e). The results are shown in Fig. 10. Fo
the three lower temperatures no significant temperature
pendence can be observed. Interestingly, a weak depend
on e is observed: higher energies correspond to smaller
ues of^ ln yharm& and thus to larger harmonic force constan

s
id

FIG. 9. Determination ofGeff(e) on the basis ofP(e,T) for N
560. The individual curves have been shifted in order to obtain
optimum overlap.
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This result is consistent with recent simulations on sm
monatomic LJ systems@38#. Due to thee dependence o
yharm(e) the densityG(e) and the effective densityGeff(e)
slightly deviate from each other. It turns out, however, th
the variances ofG(e) andGeff(e) differ by less than 10%.
In what follows this effect is neglected and one can appro
mateG(e)}Geff(e). Interestingly, the values ofyharm(e) are
shifted to smaller values if the inherent structures are a
lyzed obtained from the high temperature simulationsT
51.667 andT52.5). Again, this is a clear signature of a
harmonic effects as seen from Eq.~16!. Thus the temperature
dependence of the average harmonic partition function~see
@27#!, averaged over all inherent structures at a given te
perature, has two contributions,~i! the e dependence which
via the temperature dependence of the average energ
inherent structureŝe&T translates into a temperature depe
dence of the harmonic partition function and~ii ! the tempera-
ture dependent anharmonic effects.

In order to independently check the degree of Gaussia
of Geff(e) one may check the temperature dependence of
energy variancesP

2 (T) of P(e,T). In the case of a Gaussia
distribution one expectssP

2 (T)5s2. In Fig. 11 we display
sP

2 (T)/N. Extending the results, reported above, we ha
also included the data for different system sizesN. We first
concentrate on the data forN560 and, for reasons men
tioned above, concentrate on the three low-temperature d
It turns out that the energy variance is indeed constant, an
consistent with the value, directly obtained fromGeff(e). It
is very illuminating to discuss theN dependence ofs. In the
macroscopic limitN→` application of the central limit

FIG. 10. The averagêln yharm&(e) evaluated at different tem
peratures in dependence on energy. Note that small values ofyharm

correspond to large force constants around the respective inh
structures.

FIG. 11. The variancesP
2 (T) of P(e,T) calculated for different

temperatures and system sizes. The strong temperature depen
for N520 andN540 is explained in the text.
ll

t
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e
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theorem suggestsemax}N and s2}N. Interestingly, within
statistical error all data fors2/N agree forN>60.

Systems with size smaller thanN560 display significant
finite size effects in terms of the distribution of inhere
structures. Interestingly, the variance decreases with decr
ing temperature forN520 andN540. The reason for this
temperature dependence can be directly understood from
plot of e(t)/N for N520 at T50.667; see Fig. 12~a!. It
becomes evident that it is a single inherent structure wh
dominates the distribution of inherent structures. This do
nance directly explains the decreasing variance. The freq
occurrence of this low-energy inherent structure does
mean that the system does no longer relax. In order to cla
this point we introduce the mobilitym(t) via

m~ t !5(
i 51

N

„rW i~ t1ta/2!2rW i~ t2ta/2!…2. ~17!

It denotes the mobility at timet on the time scale of thea
relaxation timeta . As shown in Fig. 12~b! there exists times
when the system is very mobile. Indeed, at these times
system leaves its ground-state type structure and after la

ent

nce

FIG. 12. ~a! The time series of the energy of inherent structu
e(t) for N520 atT50.833; the broken line indicates the activatio
energy of the dynamics at low temperatures; see Fig. 4;~b! the
corresponding time series of mobilitiesm(t); ~c! the corresponding
time series of the energy of the MD configurationsE(t).



ce
l t
n
u

er
c-
b-
e
D

th
ur

f
u
e,
dis
n
c

in
n

e
t

-

re
gy
o

r
ive

nt

io
m
e

ed

the
des
s
de-

are
opic
us
rd-
of

r-
-

ture
of

es
er
nal

tion

6514 PRE 60STEPHAN BÜCHNER AND ANDREAS HEUER
rearrangements ends up in a new configuration which ex
for permutations and some translational shift is identica
the former structure. During the other times the system o
jumps between a small number of inherent structures, res
ing in a small value of the mobilitym(t). For comparison we
also show the time dependence of the true potential en
E(t) for the same run, directly obtained for the MD traje
tory; see Fig. 12~c!. Here, no specific features can be o
served. This exemplifies the large information content wh
analyzing inherent structures rather than the original M
configurations.

The observation that the low-temperature dynamics of
N520 sample is dominated by a single inherent struct
gives a straightforward interpretation of the dependence
the pair correlation function onN since the structure o
gBB(r ) is also dominated by this inherent structure. Calc
lating gBB(r ) for the corresponding inherent structur
shown in Fig. 13, reveals that there only exists a single
tance between the fourB particles. This type of behavior ca
be understood from the Hamiltonian of the system. Sin
A-A andA-B contacts are preferred due to the large bind
energy the system tries to maximize the distance betweeB
particles. Indeed, the distance betweenB particles is much
larger than the optimum binding distance betweenB par-
ticles. ForN560 all distinct features have disappeared.

In a next step we want to analyze the dependence
Geff(e) on system size and particle composition. It has be
argued in literature that for largeN the number of inheren
structures should scale like exp(aN) where the constanta
depends on the type of system. Of course, for smallN the
value ofa may depend onN. Since to a very good approxi
mationGeff(e)}G(e) ~see above! also the latter distribution
can be described as a Gaussian. For small systems whe
can identify an inherent structure with minimum ener
emin , determination of the absolute value of the number
inherent structures is possible. Here this is the case foN
520 andN530. Some technical points enter a quantitat
analysis. We have introducedG(e) as thedensityof inherent
structures such thatG(e)de denotes the number of inhere
structures in the interval@e2de/2,e1de/2#. The normaliza-
tion is achieved by settingG(emin)51. Since we are dealing
with binary systems we can to a very good approximat
neglect any contributions which arise due to intrinsic sy
metries of the configurations. A similar analysis has be
performed in Ref.@29# for the case of (KCl)32. In that work
two Gaussians rather than a single Gaussian were need
fit P(e,T) and thusG(e).

FIG. 13. The pair correlation functiongBB(r ) for N520 and
T50.833 determined from the inherent structures.
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For both values ofN the resultingG(e) curves are plotted
in Fig. 14. On a qualitative level one can already see that
number of inherent structures is by orders of magnitu
larger forN530 than forN520. For a quantitative analysi
of the number of inherent structures we assume that the
scription of G(e) as a Gaussian also holds fore.emax.
From the present simulations these inherent structures
not accessible because they are unfavored from the entr
as well as from the energetic point of view. In a previo
work, however, it has been shown for a monatomic Lenna
Jones-type system with 32 particle that the distribution
inherent structures~for that system approximately 400 inhe
ent structures were found! can indeed be qualitatively de
scribed by a Gaussian also for the high-energy wing@15#.
For a Gaussian the number of inherent structuresNis are
related toG(e) via

Nis5G~emax!A2ps2. ~18!

From this relation we can estimatea(N520)50.5360.02
and a(N530)50.7060.05. Thus the value ofa slightly
increases when going fromN520 to N530. Unfortunately,
this value cannot be estimated for largerN by the present
approach since no information about the inherent struc
with the lowest energy is available so that normalization
G(e) is not possible.

In Fig. 15 we showG(e) for two different compositions
(NA525,NB55 vs NA524,NB56). Starting from a mon-
atomic system and having only slightly different properti
of A as compared toB particles one expects that the numb
of inherent structures with different energies is proportio
to the binomial coefficientN!/NA!NB!. According to this
argument one would expect that for the standard composi

FIG. 14. The density of inherent structuresG(e) for N520 and
N530 obtained from simulations at a single temperature.

FIG. 15. The density of inherent structuresG(e) for two differ-
ent compositions (NA525,NB55 vs NA524,NB56).
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(NA524,NB56) the number of inherent structures is a
proximately 25/6'4 times higher. Determination ofa yields
a(24:6)50.7060.05 anda(25:5)50.5860.04. The num-
ber of inherent structures has therefore increased by a fa
of approximately exp(DaN)5exp(0.12330)'36. Thus the
increase of the number of inherent structures is larger tha
factor of four, following from purely statistical conside
ations. Having in mind that this argument only holds f
nearly identicalA and B particles, the present case of tw
significantly different species may be a source for additio
disorder and thus for an increased number of inherent st
tures @39#. Finally we calculate the specific heat. From t
partition function in Eq.~11! one can calculate the specifi
heatc(T) per particle in harmonic approximation

charm~T!531s2/~NT2!. ~19!

The second term expresses the configurational contributi
In Fig. 16 this is compared with the specific heat, obtain
from our simulations via the fluctuations of the potential e
ergy, i.e.,

c~T!53/21
Š~E2^E&!2

‹

NT2
. ~20!

We have plotted the average specific heat forN
560,80,120,160, which within statistical error are identic
It turns out that the agreement between both curves is g
for the three lower temperatures. Interestingly, the simula
data are significantly larger thancharm, indicating the rel-
evance of anharmonic terms. In contrast, for the higher t
peraturesT51.667 andT52.5 the specific heat is muc
smaller thancharm(T). For T→` the specific heat will ap-
proach the ideal gas limit 3/2. We note that on the basis
the entropy a distinction in configurational and anharmo
contributions has been discussed for experimental dat
selenium@40#.

VI. DISCUSSION

Anharmonicity

For several observables discussed above predictions
be made in harmonic approximation which are based on
effective densityGeff(e), determined at sufficiently low tem
peratures on the basis ofP(e,T). Thus any deviations from

FIG. 16. The specific heat as obtained fromGeff(e) and aver-
aged over all system sizesN>60 together with the actual specifi
heat obtained from analysis of the energy fluctuations in the
simulation. The deviations correspond to anharmonic contributio
tor
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this prediction can be directly related to anharmonic con
butions. In this section we try to characterize the anharmo
contributions. Specifically we observe anharmonic contrib
tions for the following observables:~i! For the two highest
temperatures it is not possible to determineGeff(e) on the
basis ofP(e,T); see Fig. 9. Qualitatively the plot in Fig. 9
indicates that at high temperatures the low-energy inhe
structures are found more often than expected from extra
lation of the low-temperature data. It will be discussed bel
why anharmonic effects may lead to this effect. In contra
for the three lower temperatures scaling was possible, t
enabling us to determine the effective densityGeff(e). From
the observedGeff(e), which closely resembles a Gaussia
distribution, one expects a linear increase of^e&T with in-
verse temperature as long as anharmonic effects are n
gible. However, since due to anharmonic effects low-ene
inherent structures were found too often at high temperatu
the average energy of inherent structures^e&T must be
smaller than expected. In agreement with the results of S
try et al. we indeed observe a much weaker increase of^e&T
for the two highest temperatures; see Fig. 7. Thus it is
effect of anharmonicities which dominates the temperat
behavior of^e&T at high temperatures. Note that this type
conclusion can be drawn since we have measured the
distribution functionP(e,T) rather than only its first mo-
ment. ~ii ! For all temperatures there were small but sign
cant deviations of the specific heat. Whereas for the th
lower temperatures the anharmonicities give rise to a slig
increased specific heat, for the higher temperatures one
serves a dramatic decrease.~iii ! The expectation values
^ ln yharm&(e) slightly depend on temperature which again c
be only explained by anharmonic effects.

These effects of anharmonicity, found in our simulation
can be rationalized on the basis of a simple model poten

V~x!5~1/2!ax22~1/4!b1x42~1/6!b2x6, ~21!

with the minimum atx50 (a,b1 ,b2.0) and maxima at
6xc so that its basin of attraction is the interval@2xc ,xc#. It
is sketched in Fig. 17. For reasons of simplicity we restr
ourselves to a one-dimensional potential as the simplest
resentation of a basin of attraction. The anharmonic con
butions are represented by the coefficientsb1 and b2.
Whereasb1 corresponds to the local anharmonicity arou
the originx50, b2 reflects the overall anharmonicity of th
well. We therefore assume that close toxc the term propor-
tional tob2 is much more relevant than the term proportion
to b1. All conclusions, drawn below, are totally independe
of the specific form of this potential. With simple algebra t
anharmonic corrections to the harmonic partition function

s.

FIG. 17. Sketch of the model potentialV(x) as described in the
text. The size of the basin of attraction and the potential height
indicated.
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well as the specific heat ofV(x) can be calculated in the
limit of low and high temperatures. We obtain for low tem
peratures

zanh~T!511
3b1T

4a2
, ~22!

canh~T!5
3b1T

2a2
~23!

and for the limitT→` to lowest order in 1/T

zanh~T!5A6

p
AVc

T
, ~24!

canh~T!521, ~25!

wherecanh(T)5c(T)2charm(T). Here we defined

Vc[V~6xc!'~1/3!a1.5b2
20.5, ~26!

which corresponds to the energy difference between m
mum, corresponding to a saddle in the PEL, and minimu

It is straightforward to explain the temperature depe
dence of the specific heat. From Eq.~23! it is evident that
there exist positive anharmonic contributions and amb
temperatures for which the anharmonicity is dominated
the local anharmonicity term proportional tob1. For some
temperatureTc,r , however, the system realizes the finite s
of the potential well and correspondingly the presence of
upper energy cutoff. This results in a strong decrease of
specific heat until for very high temperatures the ideal
limit is recovered, i.e., vanishing configurational contributi
to c(T). This effect is governed by the global anharmonic
term proportional tob2. It is not surprising thatTc,r is close
to the temperature for which upon cooling the PEL starts
become relevant~@24,26# and Fig. 7! since according to ou
above discussion the PEL is relevant as long as the sys
mainly stays close to the inherent structures and is t
dominated by the harmonic contributions.

For explaining the anharmonicity effects related to t
temperature dependence ofGeff(e) and ^ ln yharm&(e) addi-
tional properties of the PEL have to be postulated:~i! The
local anharmonicity, i.e.,b1, only mildly depends on energy
This assumption is compatible with the observation that a
the local force constants, i.e.,a, only show a very weak
dependence on energy; see Fig. 10.~ii ! Low-energy inherent
structures possess larger barrier heights, correspondin
larger values ofVc in our simple model potential. Evidenc
for this assumption has been presented in@24,26#.

First we deal with the apparent temperature depende
of the effective density of inherent structuresGeff(e). For the
three lower temperatures we already learned from analys
the specific heat that local anharmonicity effects are alre
present. According to assumption~i! the anharmonic contri-
bution only mildly depends on energye. Therefore to a good
approximation these anharmonic effects are not visible
Fig. 9 since they are irrelevant for the scaling analyis.
discussed above only a stronge dependence ofzanh(e,T)
rendersGeff temperature dependent. For the two high te
peratures, however, where according to the specific h
i-
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analysis the high-temperature expansion, i.e., Eq.~24!, be-
comes relevant, the anharmonicity depends onVc . Follow-
ing assumption~ii ! the anharmonic contributions are signifi
cantly larger for low-energy inherent structures. This leads
an overestimation ofGeff(e) in the region of low energies
This explains why the effective densities, obtained for diffe
ent temperatures by the above analyis, do not overlap at
temperatures.

For elucidating the temperature dependence
^ ln yharm&(e) one has to take into account the variation
Yi

harm for inherent structures with the same energye i5e.
According to Eq.~26! one can expect that inherent structur
with larger force constantsa, i.e., smallerYi

harm, possess
somewhat larger barrier heights, i.e., largerVc . According to
Eq. ~24! this results in frequent sampling of inherent stru
tures with smallYi

harm. As a consequence the average va
^ ln yharm&(e) at fixed e should decrease with temperature
sufficiently high temperatures in agreement with the num
cal findings in Fig. 10. In summary, our simple model pote
tial qualitatively reproduces all anharmonicity features o
served in our simulations.

Kauzmann temperature and finite-size effects

The Kauzmann temperatureTK has been introduced as th
temperature for which the configurational entropy of t
glass-forming system would disappear in equilibrium con
tions. Thus knowledge ofG(e) enables one to estimateTK .
For T5TK ~for infinite systems! one expects the relaxatio
time to diverge since only a single configuration is acc
sible. In analogy to phase transitions one might expect mo
fications for finite systems: the Kauzmann temperature
smeared out and forT,TK the system still has a finite re
laxation time.

In our caseG(e) is mainly determined by the paramete
a, s, andN. For N520 the dynamics at low temperature
is also determined by a single inherent structure. In w
follows we restrict ourselves to a perfect Gaussian distri
tion and consider the effects which arise from the fact tha
sufficiently low temperatures the system is sensitive to
fact that one has a low-energy cutoff ofG(e), i.e., G(e)
50 for e,emin due to the finite~albeit exponential large!
number of inherent structures. A good indicator is the va
ance ofP(e,T). For large temperatures~but not too large in
order to avoid anharmonic effects, see above! one expects
this variance to be constant and identical to the variance
G(e). In contrast, forT→0 the system is stuck in the inhe
ent structure with the lowest energy, giving rise to a vani
ing variance. The temperature where this crossover oc
and which can be identified as the Kauzmann temperatureTK
can be estimated by the condition that the energy inte
@^e&T2as,^e&T1as# @^e&T : average energy ofP(e,T)],
for which the distributionP(e,T) has its main contributions
starts to approach the value ofemin , i.e.,

^e&TK
2as5emin . ~27!

a is a constant of order unity. The strength of the depende
of TK on this parametera is a measure for the temperatu
width of the transition. Thus one would expect that for lar
systems the dependence ona vanishes; see above. The valu
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of emin is determined by the conditionG(emin)51. For a
Gaussian distribution the value of^e&T is given by Eq.~15!.

^e&T5^e&T5`2
s2

T
. ~28!

Thus we obtain

1

2ps2
exp„2~2s2/TK2as!2/2s2

…expaN51. ~29!

Neglecting corrections of order 1/N this relation can be re
written as

s/AN

TK
5A2a2a/AN. ~30!

For large systems the last term disappears and thusTK is
independent of the value ofa in agreement with expectation
We do not know the value ofa for systems larger thanN
530. However, since already forN>60 the parameters2/N
~Fig. 11! and emax/N ~Fig. 7! have reached their limiting
value one may speculate that together with the values oa
for N520 andN530 the value ofa for large N is larger
than 0.7 and smaller than 1.2~linear extrapolation!. On this
basis the Kauzmann temperature can be estimated aTK
50.3960.05. As a comparison the mode-coupling critic
temperature has been estimated for the present syste
Tc50.56; see Ref.@19#, taking into account the temperatu
shift of 30%~see below!. For smaller systems the addition
term a/AN clearly increases the value ofTK . As has been
already discussed in the context of Fig. 11 the dynamic
the three lower temperatures forN520 is already signifi-
cantly influenced by the presence of the lower cutoff
G(e). A quantitative analysis, however, is hampered by
fact that the structure ofG(e) close to the lower cutoff is
more complicated due to the presence of a single or a
inherent structures, dominating the physics; see also
@28#. Summarizing this line of argumentation, theN depen-
dence ofTK as expressed in Eq.~30! clearly leads to finite
size effects and it is exactly this type of finite size effe
which we have explicitly found in our simulations forN
520 andN540. Finally we note that this derivation is sim
lar to what has been done for the random energy model@41#.

Very recently, Kim and Yamamoto have analyzed s
sphere systems and found a significant finite size effect w
comparing systems withN5108 and N510000 particles
@42#. The interaction of adjacent particles in LJ systems
der high pressure is dominated by the first term proportio
to r 212. Therefore it is reasonable to assume that the phy
of very dense LJ systems is somewhat similar to that of
sphere systems. Recent work on monatomic LJ-type syst
@15# as well as theoretical predictions@39# show that the
number of inherent structures strongly decreases with
creasing pressure. In our terminology this would result i
much smaller value ofa for LJ systems at high density an
thus soft sphere systems than for LJ systems at ambient
sities, discussed in this work. According to the above disc
l
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sion of Eq. ~30! this would mean that finite size effects
related to the finite range of energies of inherent structu
occur for much largerN as compared to LJ-type glasses.
contrast, Kim and Yamamoto have explained their finite s
effect on the basis of dynamic heterogeneities, i.e., the p
ence of fast and slow particles. Finite size effects were
served at a temperature for which the length scalej of dy-
namic heterogeneities, i.e., the cluster size of slow or
particles, became as large as the simulation box. The in
esting question arises whether the temperature for whichj is
of the order of the box size is strongly related to the te
perature for which the finite number of inherent structur
i.e., the energyemin becomes relevant. This picture would b
consistent with the notion that for macroscopic systems
length scale of the glass transition diverges at the Kauzm
temperature.

Physical picture

Based on our results as well as previous work on PE
the following picture seems to emerge. Coming from lo
temperatures the system mainly stays close to the inhe
structures and the dynamics can be described by a supe
sition of local vibrations and hopping processes. Around
temperature close to the mode-coupling temperatureTc local
anharmonic effects start to play a role as seen, e.g., from
temperature dependence of the mean-square displace
around one inherent structure@24#, from the comparison of
the inherent structure trajectories and the real trajecto
@25#, from the Instantaneous Normal Mode Analysis@44#,
and from the presence of anharmonic contributions of
specific heat aboveTc , seen in this work. Despite the anha
monic effects, the PEL still has a strong influence on
dynamics as explicitly shown in Ref.@26#. At a temperature
of the order 2Tc global anharmonic effects start to domina
the dynamics which are partly related to the presence
saddles between inherent structures and thus to the finite
of the basins of attraction. It is, of course, still the PE
representing the total potential energy of the system, wh
is responsible for the dynamics. However, the topography
the individual inherent structures, including their clo
neighborhood, becomes irrelevant@26#.

In summary, we have obtained a thermodynamic pict
of LJ-type glasses based on an appropriate numerical an
sis of the PEL. Questions concerning the Kauzmann te
perature, finite-size effects, and anharmonicities have b
approached. The present work is a step in elucidating
nature of the supercooled state on the basis of the P
which hopefully stimulates further research along this dir
tion.
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6518 PRE 60STEPHAN BÜCHNER AND ANDREAS HEUER
@1# Disorder Effects on Relaxational Processes, edited by R. Rich-
ert and A. Blumen ~Springer-Verlag, Berlin, Heidelberg
1994!.

@2# M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Che
100, 13 200~1996!.

@3# G. Adam and J. H. Gibbs, J. Chem. Phys.43, 139 ~1965!.
@4# W. Götze and L. Sjo¨gren, Rep. Prog. Phys.55, 241 ~1992!.
@5# M. Goldstein, J. Chem. Phys.51, 3728~1969!.
@6# C. A. Angell, Science267, 1924~1995!.
@7# F. H. Stillinger, Science267, 1935~1995!.
@8# F. H. Stillinger and T. A. Weber, Phys. Rev. A28, 2408

~1983!.
@9# I. Ohmine, H. Tanaka, and P. G. Wolynes, J. Chem. Phys.89,

5852 ~1988!.
@10# H. Jonsson and H. C. Andersen, Phys. Rev. Lett.60, 2295

~1988!.
@11# F. Sciortino, A. Geier, and H. E. Stanley, Nature~London!

354, 218 ~1991!.
@12# H. Tanaka, Nature~London! 380, 328 ~1996!.
@13# R. S. Berry, Chem. Rev.93, 2379~1993!.
@14# M. A. Miller, J. P. K. Doye, and D. J. Wales, J. Chem. Phy

110, 328 ~1999!.
@15# A. Heuer, Phys. Rev. Lett.78, 4051~1997!.
@16# L. Angelani, G. Parisi, G. Ruocco, and G. Viliani, Phys. Re

Lett. 81, 4648~1998!.
@17# T. A. Weber and F. H. Stillinger, Phys. Rev. B31, 1954

~1985!.
@18# A. Heuer and R. J. Silbey, Phys. Rev. Lett.70, 3911~1993!.
@19# W. Kob and H. Andersen, Phys. Rev. E51, 4626~1995!.
@20# K. D. Ball et al., Science271, 963 ~1996!.
@21# J. C. Scho¨n and P. Sibani, J. Phys. A31, 8165~1998!.
@22# P. G. Wolynes, Acc. Chem. Res.25, 513 ~1992!.
.

.

.

@23# T. Klotz, S. Schuber, and K. H. Hoffmann, Eur. Phys. J. B2,
313 ~1998!.

@24# S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature~Lon-
don! 393, 554 ~1998!.

@25# T. B. Schro”der, S. Sastry, J. C. Dyre, and S. C. Glotze
cond-mat/9901271~1999!.
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